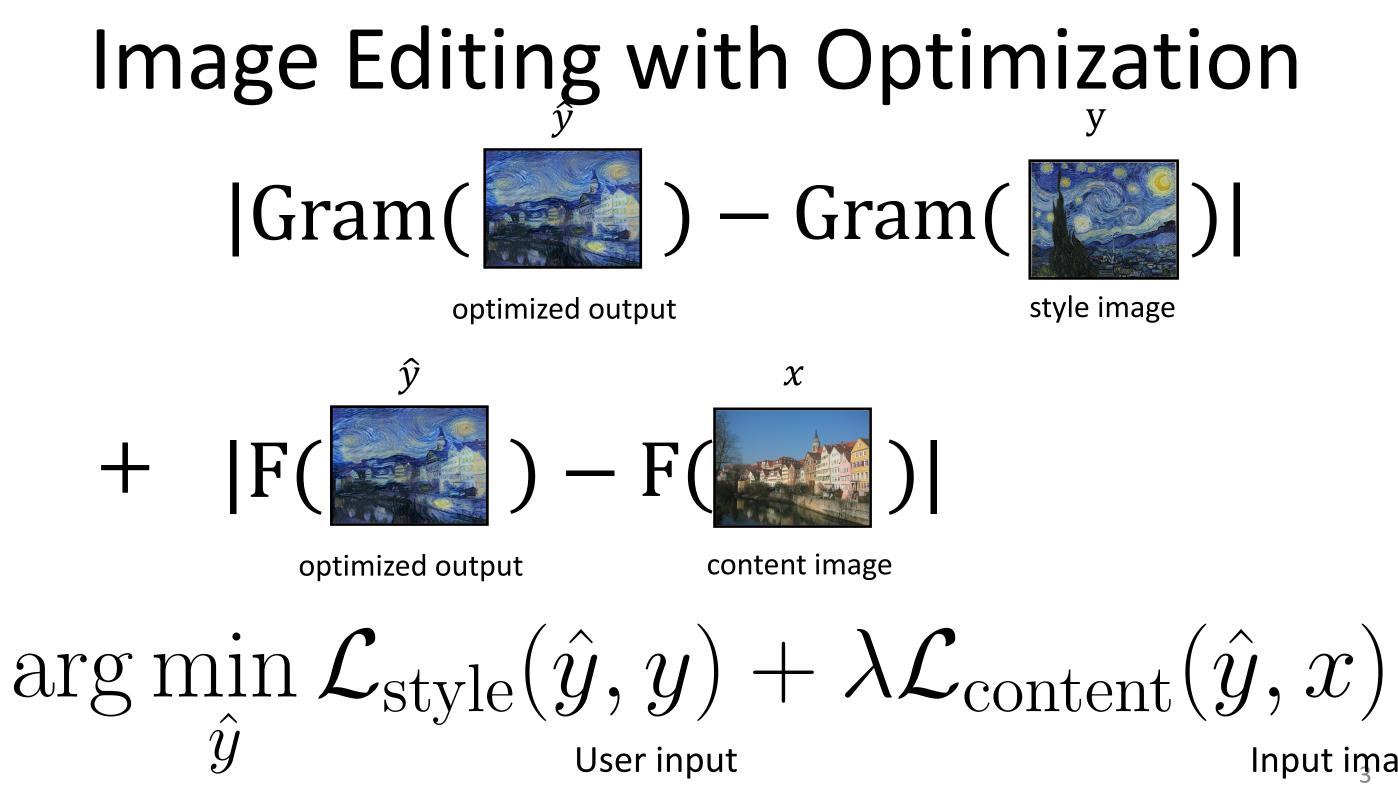


Image Editing with Optimization (part I) Jun-Yan Zhu 16-726, Spring 2022

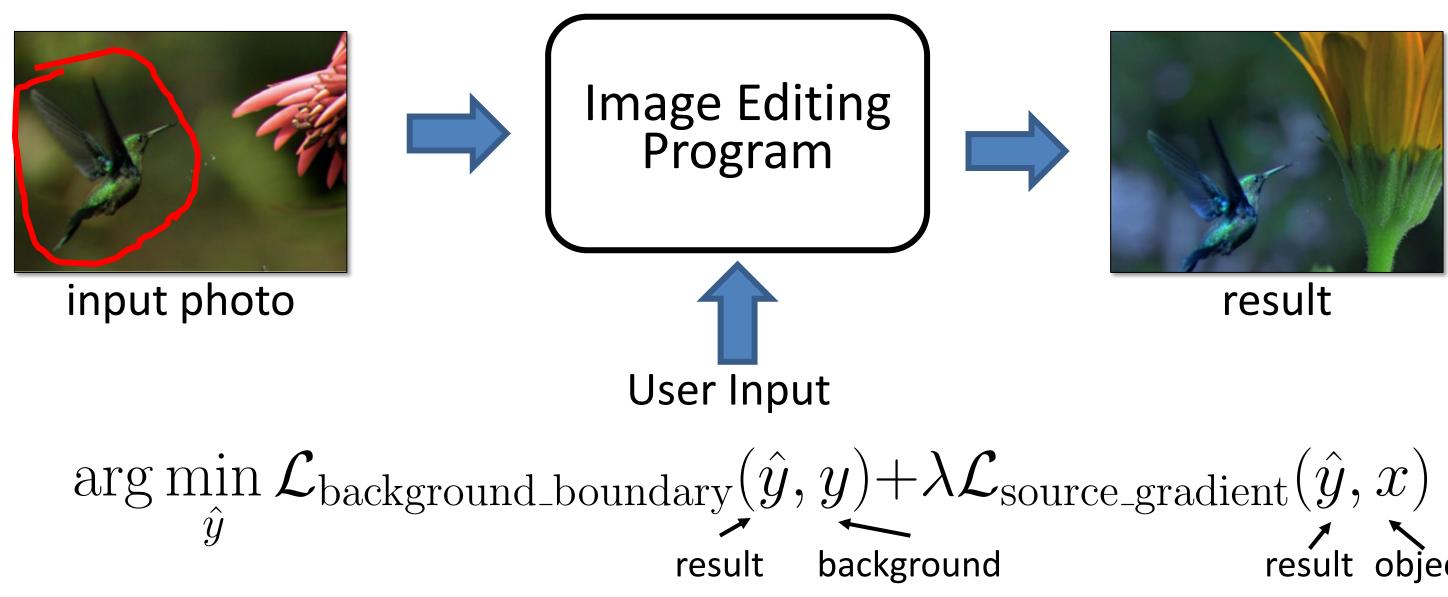
© GANPaint [Bau et al. 2019]

Style Transfer vs. Image-to-Image Translation

- Data (how to define Style)
 - A single image? A collection of images?
- Applications
 - Photo -> Painting (Neural Style Transfer, Image-to-Image Translation)
 - Photo -> Photo (Image-to-Image Translation, Photo Style Transfer (Color))
 - Painting -> Photo (Image-to-Image Translation, Deep Image Analogy)
- Algorithms:
 - Patch-based method (i.e., correspondence between output and input)
 - Optimization-based method
 - Feed-forward network
- Loss functions
 - Style Loss: GAN loss, Gram matrix loss
 - Content Loss: Perceptual Loss (L2 reconstruction loss), identity loss, conditional ____ GAN Loss, Cycle-consistency loss, Contrastive Loss (InfoNCE)

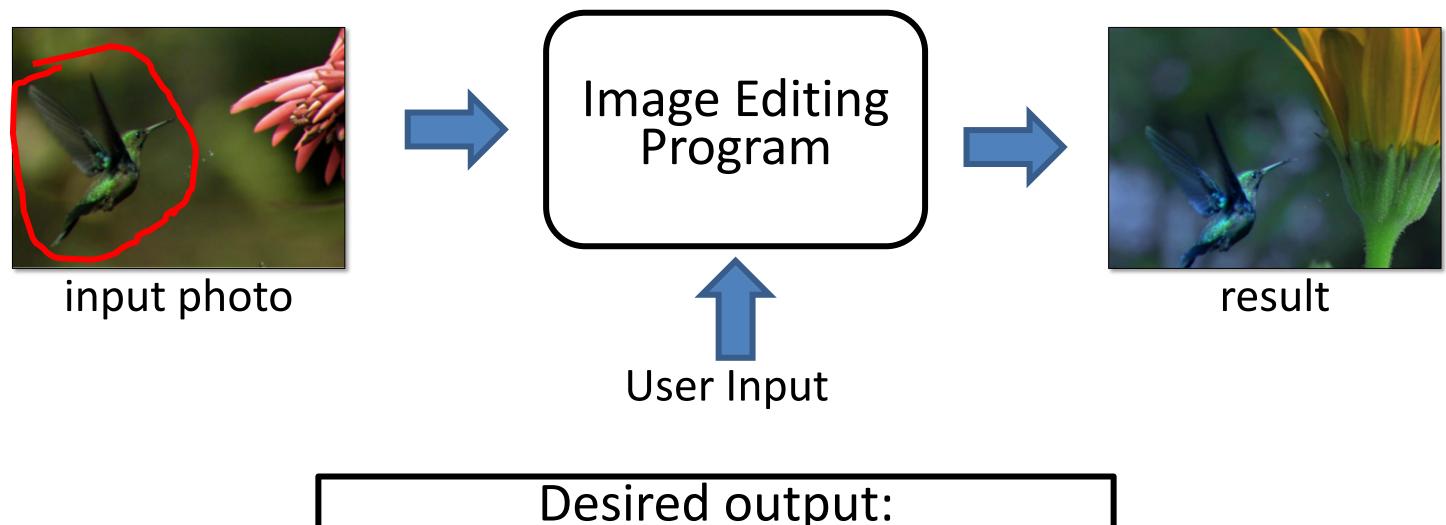


Input image



result object

[Tao et al. 2014]



Desired output: stay close to the input. satisfy user's constraint.

[Tao et al. 2014]

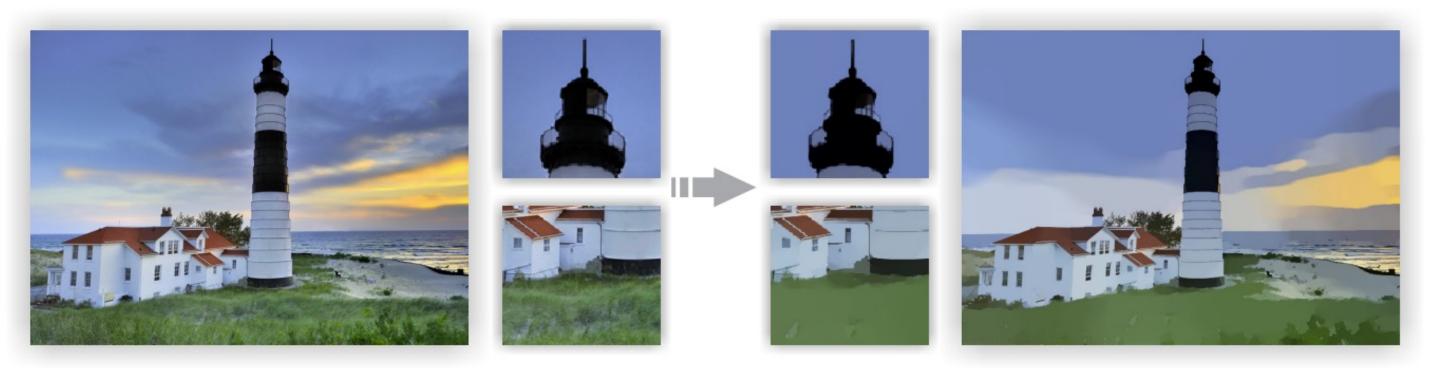


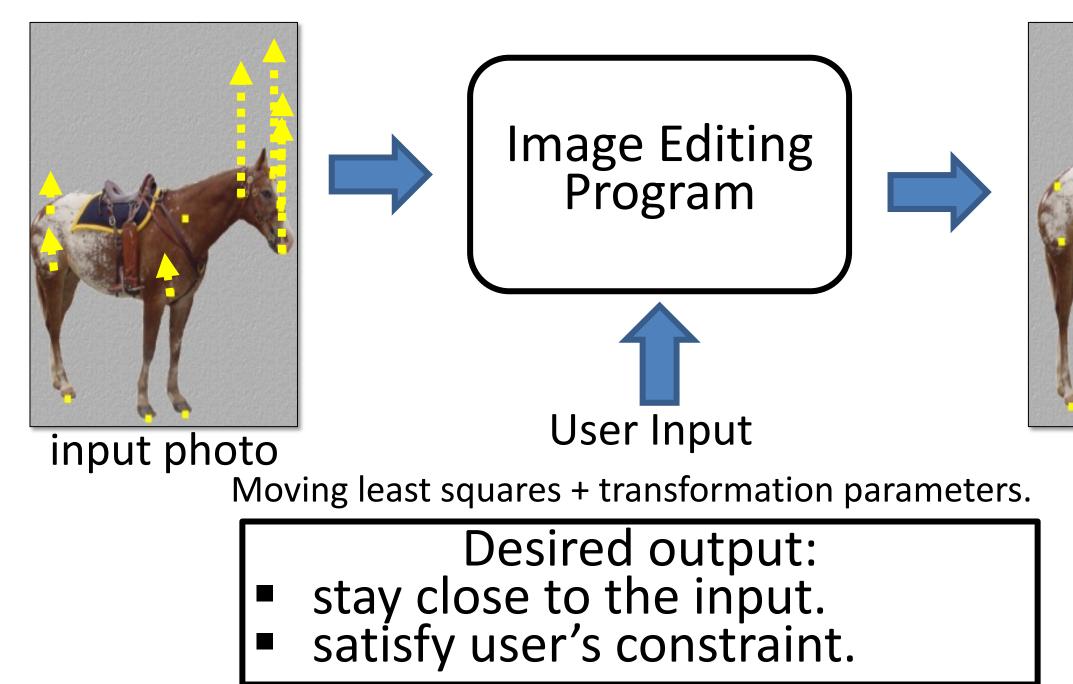
Image Smoothing via LO Gradient Minimization [Xu et al., SIGGRAPH Asia 2011]

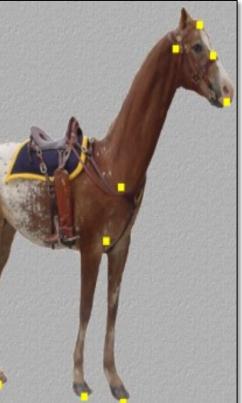
$$\arg\min_{\hat{y}} \{ \|\hat{y} - x\| + \lambda C(\hat{y}) \}$$

ents elements)

Colorization using Optimization [Levin et al., SIGGRAPH 2004]

YUV color space (Y is fixed) constant: scribbles variables: rest of the pixels $\mathbf{r} \left(U(\mathbf{r}) - \sum_{\mathbf{s} \in N(\mathbf{r})} w_{\mathbf{rs}} U(\mathbf{s}) \right)^2$ visual similarity between r and s Intensity, location, edge, motion, etc. variables: rest of the pixels the color of pixel r the color of pixel s (s is r's neighbor)





result

[Schaefer et al. 2006]

So far so good

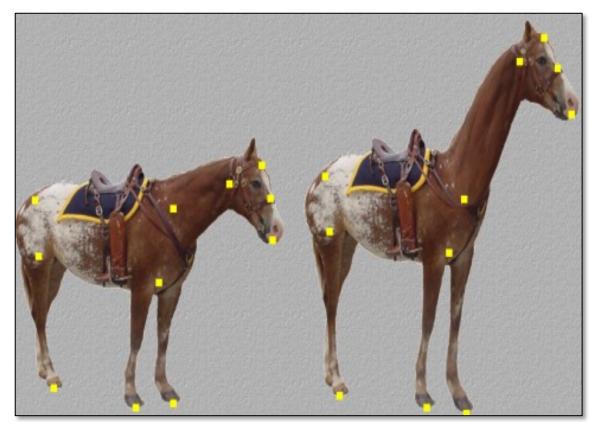


Image Warping

Image Composition

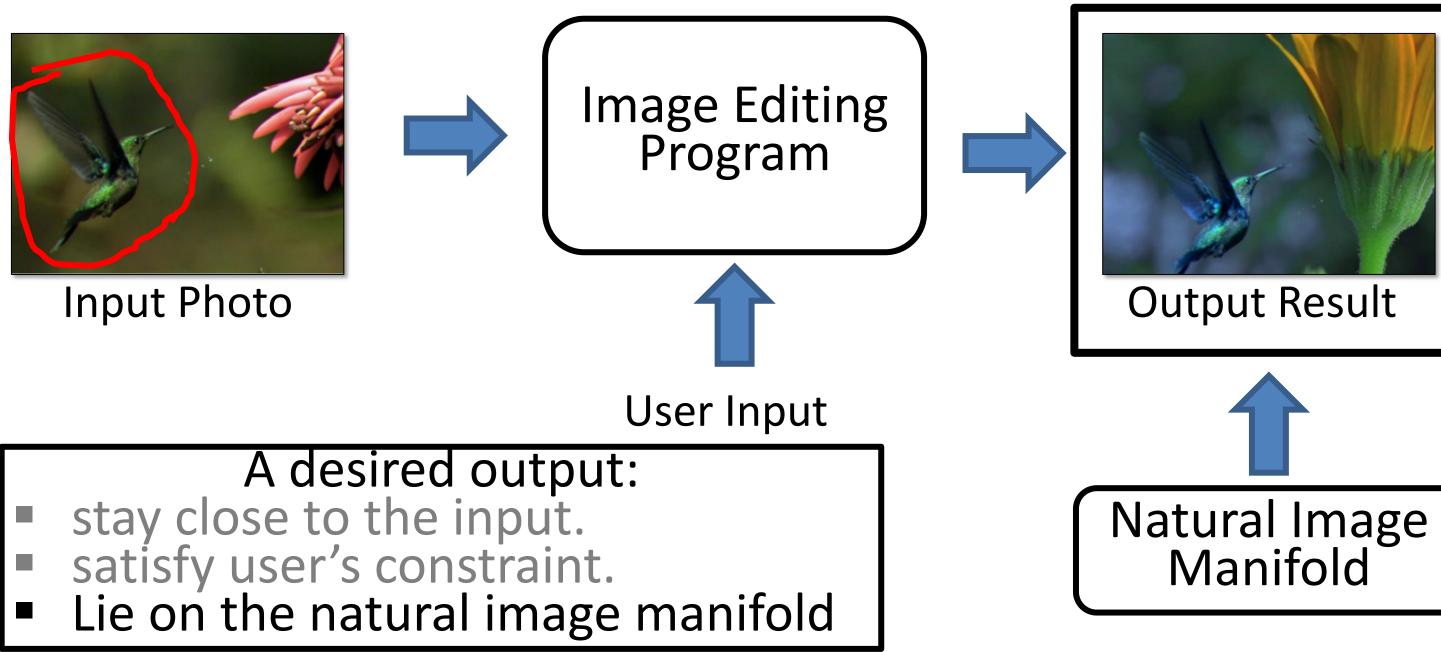
Things can get really bad

Image Composition

The lack of "safety wheels"

Image Warping

Adding the "safety wheels"



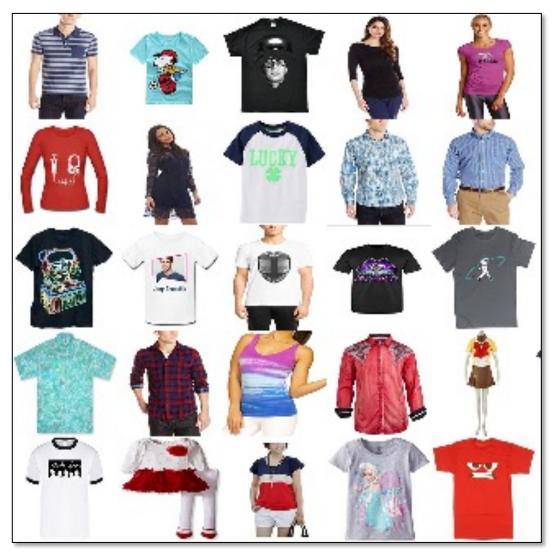
Learning Natural Image Manifold

- Deep generative models: $G(z): z \to x$
 - Generative Adversarial Network (GAN)
 - (e.g., DCGAN, StyleGAN2, BigGAN)
 - Variational Auto-Encoder (VAE)
 (e.g., VQ-VAE2)
 - Elow based models (e.g. Pea

. . .

- Flow-based models (e.g., RealNVP, Glow)...
- Diffusion models (e.g., DDPM, DDIM)

GAN as Manifold Approximation



Sample training images from "Amazon Shirts"

Random image samples from Generator G(z)

DCGAN [Radford et al. 2015]

Traverse on the GAN Manifold

 $G(z_0)$ Linear Interpolation in z space: $G(z_0 + t \cdot (z_1 - z_0))$

Limitations of DCGAN:

- not photo-realistic enough, low resolution
- produce images randomly, no user control

$G(z_1)$

DCGAN [Radford et al. 2015]

Changing Variables

- Traditional method: Optimizing the image user constraint $\hat{y}^* = \arg\min_{\hat{y}} \mathcal{L}(x, \dot{y}, \hat{y})$ input output
- New method: Optimizing the latent code user constraint

$$z^* = \arg\min_{z} \mathcal{L}(x, \overset{\bullet}{y}, G(z))$$
input Latent code
Generator

15

Projecting and Editing an Image

original photo

projection on manifold

different degree of image manipulation

transition between the original and edited projection

Edit Transfer

Projecting and Editing an Image

original photo

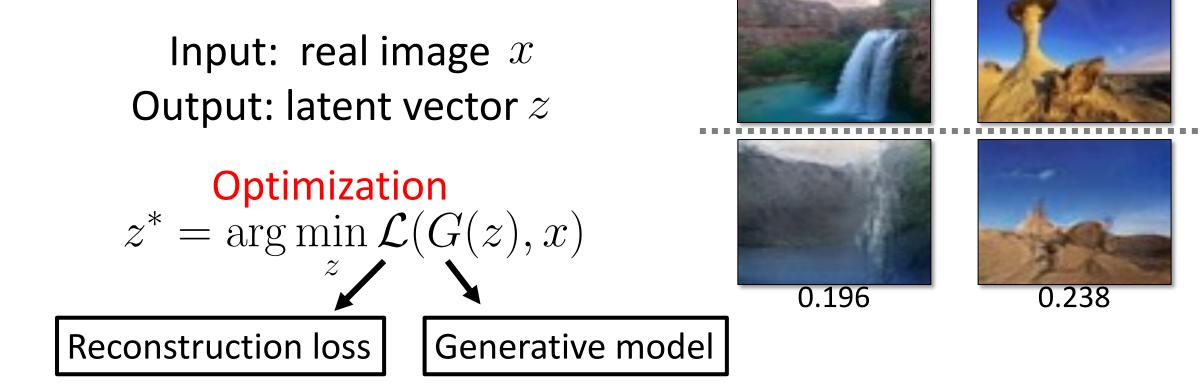
projection on manifold

different degree of image manipulation

transition between the original and edited projection

Edit Transfer

Projecting an Image into GAN Manifold



0.332

Projecting an Image into GAN Manifold

Input: real image xOutput: latent vector z

 $\begin{array}{l} & \text{Optimization} \\ z^* = \arg\min_z \mathcal{L}(G(z), x) \end{array}$

Inverting Network z = E(x) $E = \arg \min_{E} \mathbb{E}_{x} \mathcal{L}(G(E(x)), x)$ Auto-encoder with a fixed decoder



0.332

0.336

Projecting an Image into GAN Manifold

Input: real image xOutput: latent vector z

 $\begin{array}{l} & \textbf{Optimization} \\ z^* = \arg\min_z \mathcal{L}(G(z), x) \end{array}$

Inverting Network z = E(x) $E = \arg\min_{E} \mathbb{E}_{x} \mathcal{L}(G(E(x)), x)$

Hybrid Method

Use the network as initialization for the optimization problem

0.332

0.336

0.268

Manipulating the Latent Code

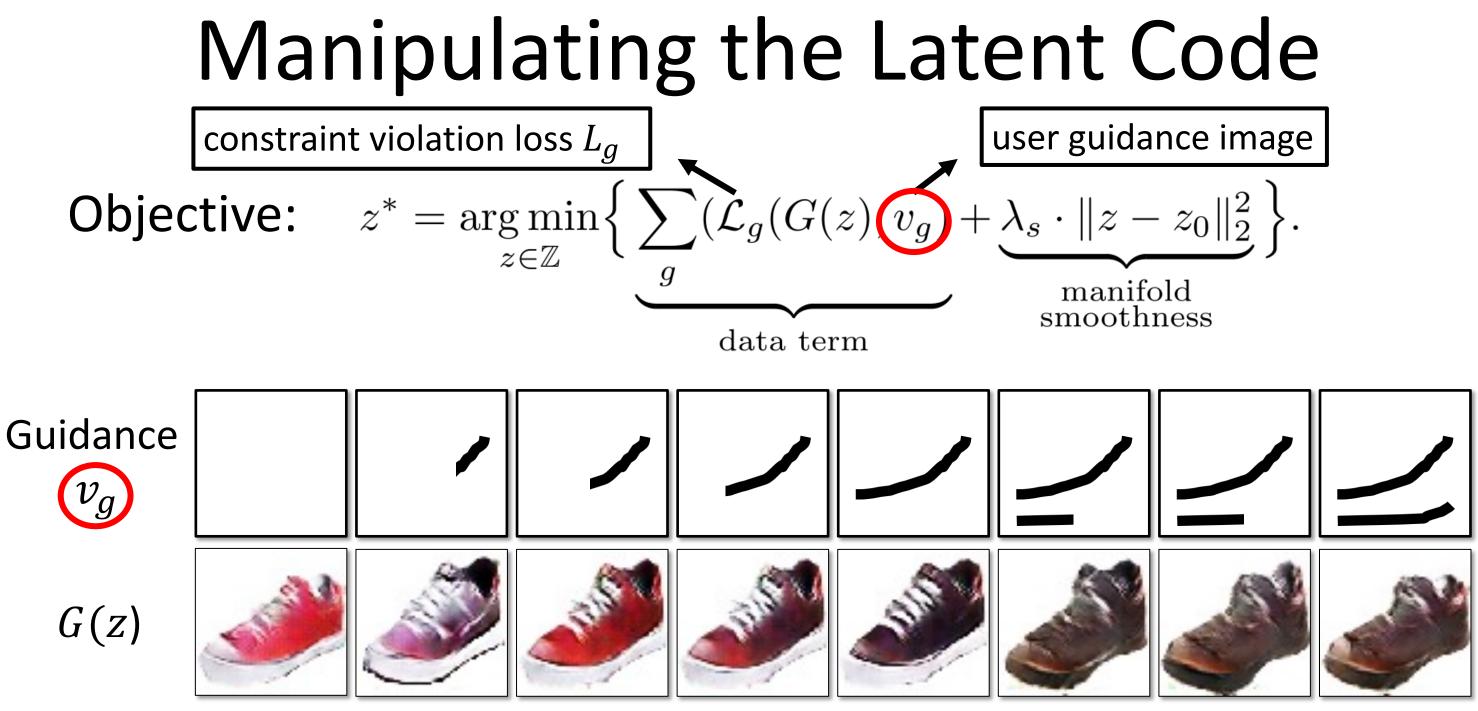
original photo

projection on manifold

different degree of image manipulation

transition between the original and edited projection

Edit Transfer



 Z_0

Post-Processing

different degree of image manipulation

transition between the original and edited projection

original photo

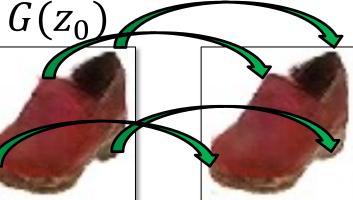
projection on manifold

Edit Transfer

Edit Transfer

Motion (u, v)+ Color ($A_{3\times4}$ **):** estimate per-pixel geometric and color variation

$$\iint \underbrace{\|I(x,y,t) - A \cdot I(x+u,y+v,t+1)\|^2}_{\text{data term}} + \underbrace{\sigma_s(\|\nabla u\|^2 + \|\nabla v\|^2)}_{\text{spatial reg}} + \underbrace{\sigma_s(\|\nabla$$



Input

$+\sigma_c \|\nabla A\|^2 dx dy$ color reg

Edit Transfer

Motion (**u**, **v**)+ Color ($A_{3\times4}$): estimate per-pixel geometric and color variation

$$\iint \underbrace{\|I(x,y,t) - A \cdot I(x+u,y+v,t+1)\|^2}_{\text{data term}} + \underbrace{\sigma_s(\|\nabla u\|^2 + \|\nabla v\|^2)}_{\text{spatial reg}} + \underbrace{\sigma_s(\|\nabla$$

 $G(z_0)$

Input

$+\sigma_c \|\nabla A\|^2 dx dy$ color reg

Edit Transfer

Motion (u, v)+ Color $(A_{3\times 4})$: estimate per-pixel geometric and color variation

$$\iint \underbrace{\|I(x,y,t) - A \cdot I(x+u,y+v,t+1)\|^2}_{\text{data term}} + \underbrace{\sigma_s(\|\nabla u\|^2 + \|\nabla v\|^2)}_{\text{spatial reg}} + \underbrace{\sigma_s(\|\nabla$$

 $G(z_0)$

Linear Interpolation in z space

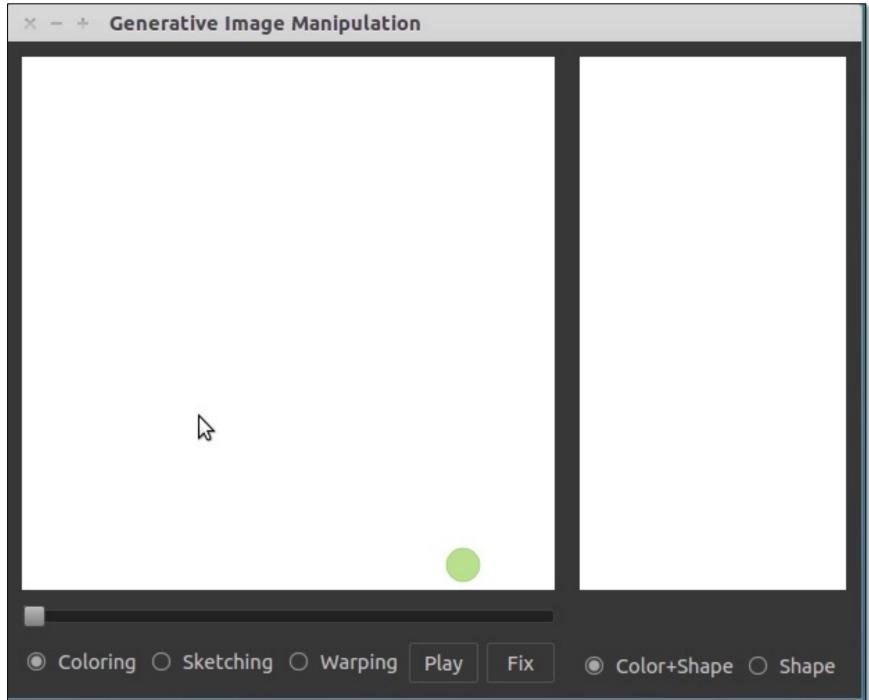
$+\sigma_c \|\nabla A\|^2 dx dy$ color reg

Result

Image Manipulation Demo

Image Manipulation Demo

Interactive Image Generation



User edits

Generated images

Sketch

iGAN [Zhu et al. 2016]. Also see Neural Photo Editor [Brock et al. 2017]

Changing Variables

- Traditional method: Optimizing the image user constraint $\hat{y}^* = \arg\min_{\hat{y}} \mathcal{L}(x, \dot{y}, \hat{y})$ input result
- New method: Optimizing the latent code user constraint

$$z^* = \arg\min_{z} \mathcal{L}(x, \overset{\bullet}{y}, G(z))$$
input Latent code
Generator

31

Projecting and Editing an Image

original photo

projection on manifold

different degree of image manipulation

transition between the original and edited projection

Post-processing

Image Editing with GANs

- Step 1: Image Projection/Reconstruction $z_0 = \arg \min_z \mathcal{L}(G(z), x)$
- Step 2: Manipulating the latent code

$$z_1 = z_0 + \Delta z$$

• Step 3: Generate the edited result

$$G(z_1)$$

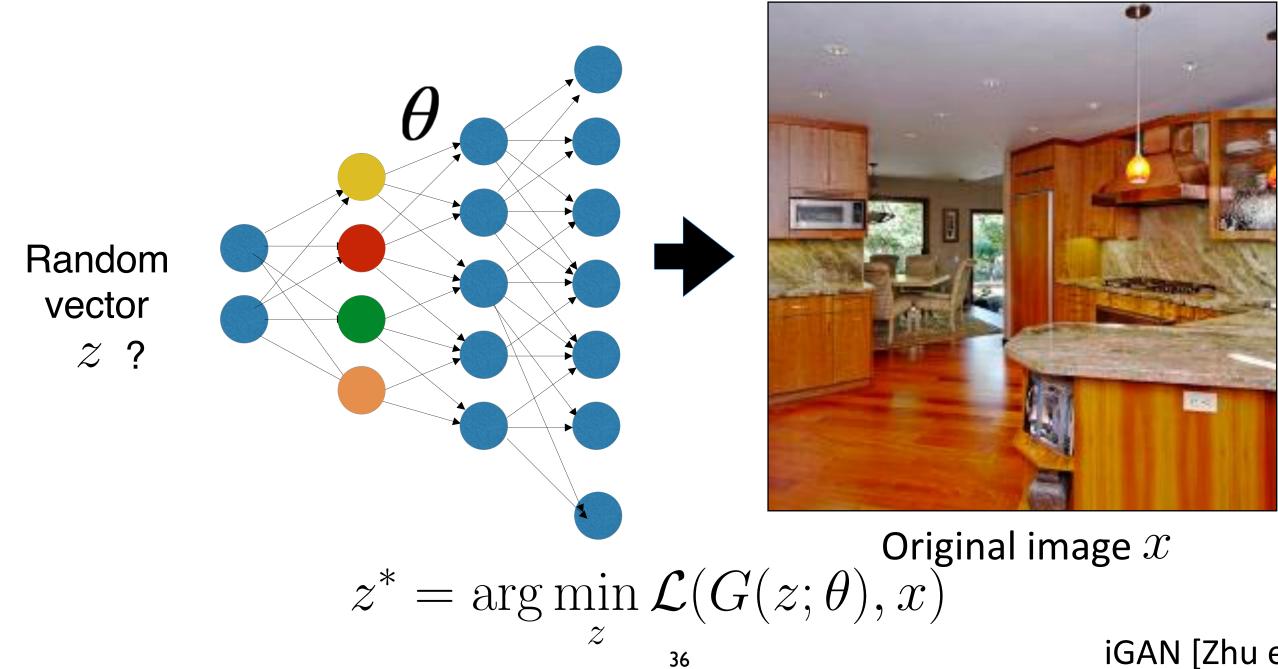
S on

Image Projection with GANs

Image Reconstruction (high-res images, Big Models)

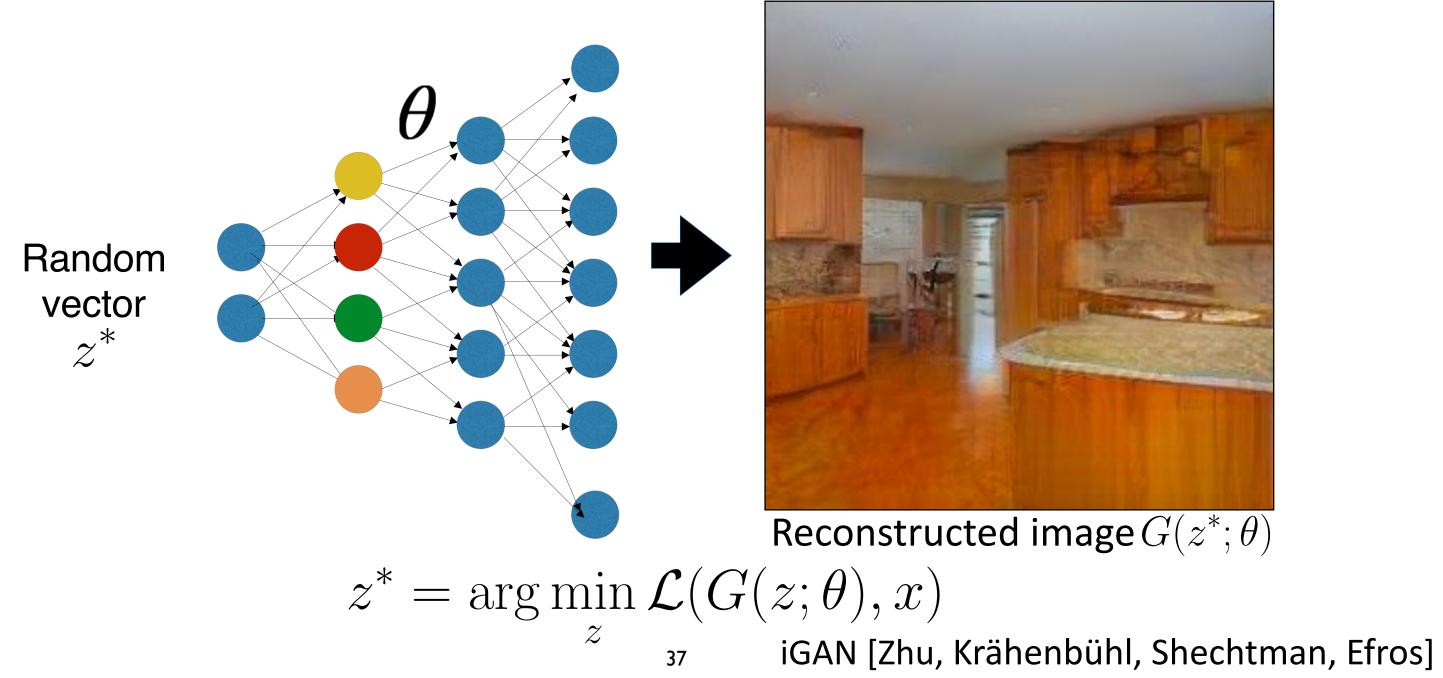
Original image x

Image Reconstruction (high-res images, Big Models)



iGAN [Zhu et al. 2016]

Image Reconstruction (high-res images, Big Models)



Find the Differences...

Original image

GAN reconstructed image

Find the Differences...

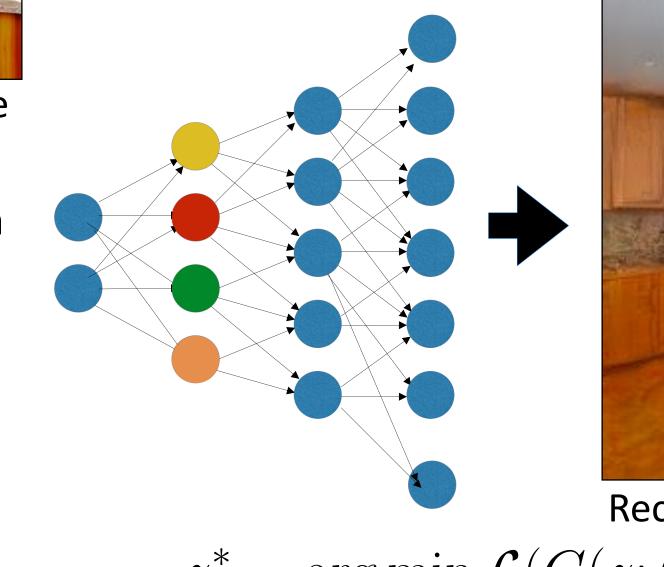
Original image

No stove

Original image

Random vector z^*

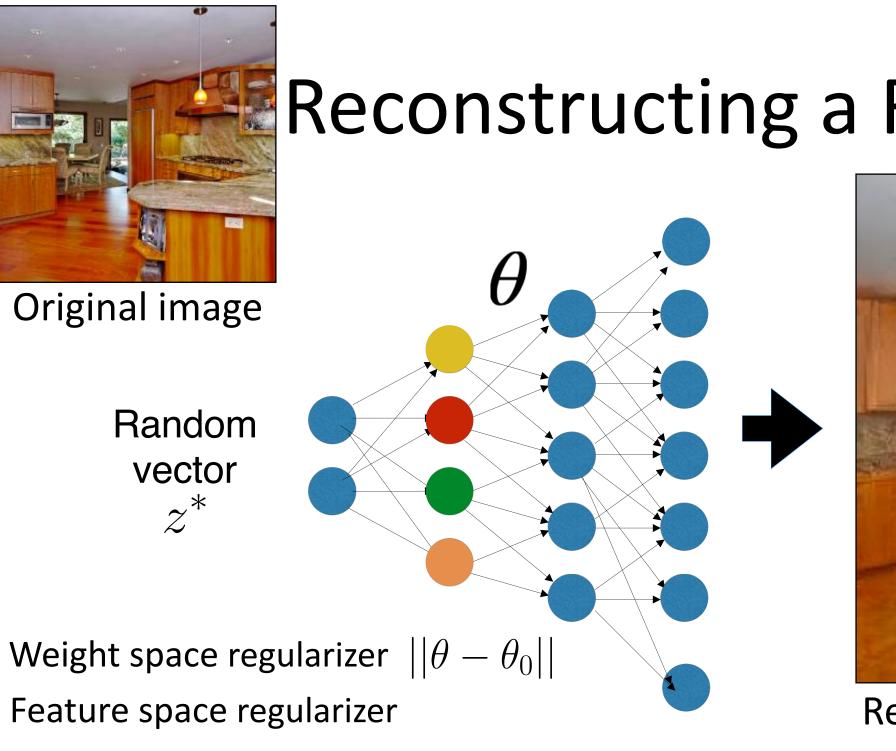
Reconstructing a Real Photo



Reconstructed image $G(z^*; \theta)$

 $z^* = \arg\min \mathcal{L}(G(z;\theta), x)$ \boldsymbol{z}

iGAN [Zhu et al. 2016]



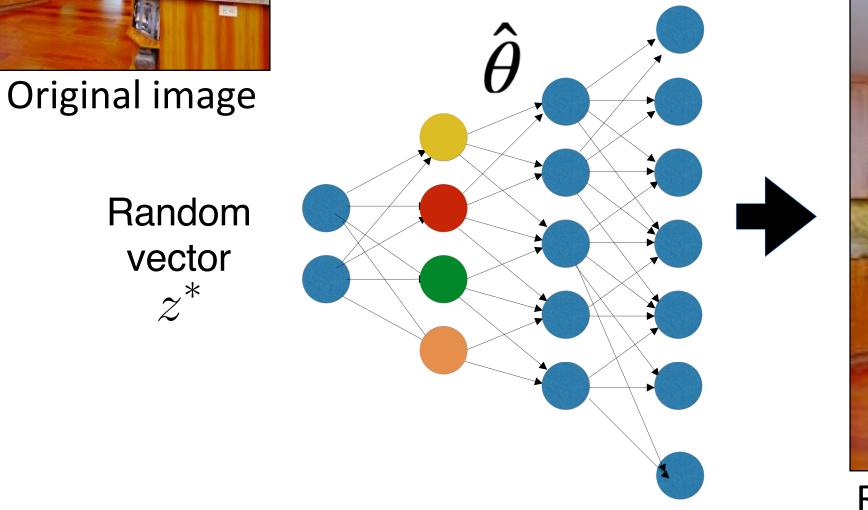
Reconstructing a Real Photo



 $z^*, \theta^* = \arg\min_{z, \theta} \mathcal{L}(G(z; \theta), x)$

Regularizer

Reconstructing a Real Photo



Reconstructed image $G(z^*; \theta^*)$

Reconstructing a Real Photo

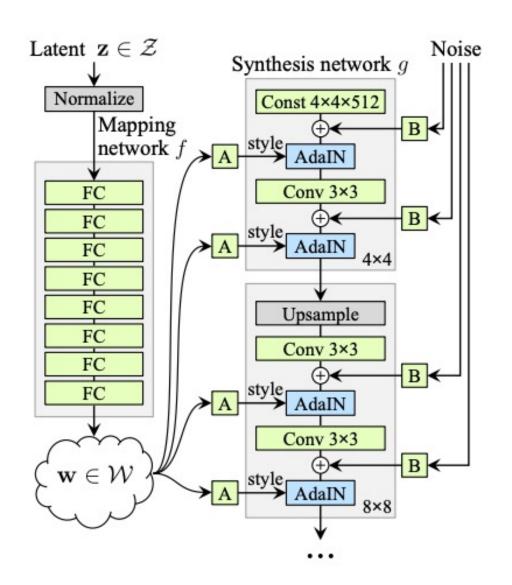
Original image

With z^*

Semantic Photo Manipulation [Bau, Strobelt, Peebles, Wulff, Zhou, Zhu, Torralba, SIGGRAPH 2019] Inspired by Deep Image Prior [Ulyanow et al.] and Deep Internal learning [Shocher et al.]

With z^* and θ^*

Using Different Layers



Optimizing the latent code

$$z^* = \arg\min_z \mathcal{L}(G(z), x)$$

Optimizing the style code $w^* = \arg\min \mathcal{L}(g(w), x)$

Optimizing the extended style code

$$w_+^* = \arg\min_{w+} \mathcal{L}(g(w_+), x)$$

Image2StyleGAN [Abdal et al., 2019], StyleGAN2 [Karras et al., 2019]

Using Different Layers: w space

StyleGAN - generated images

StyleGAN2 - generated images

StyleGAN2 [Karras et al., 2019]

Using Different Layers: w space

StyleGAN2 — real images

StyleGAN2 [Karras et al., 2019]

Using Different Layers: w+ space



All the results are reconstructed using Face Model

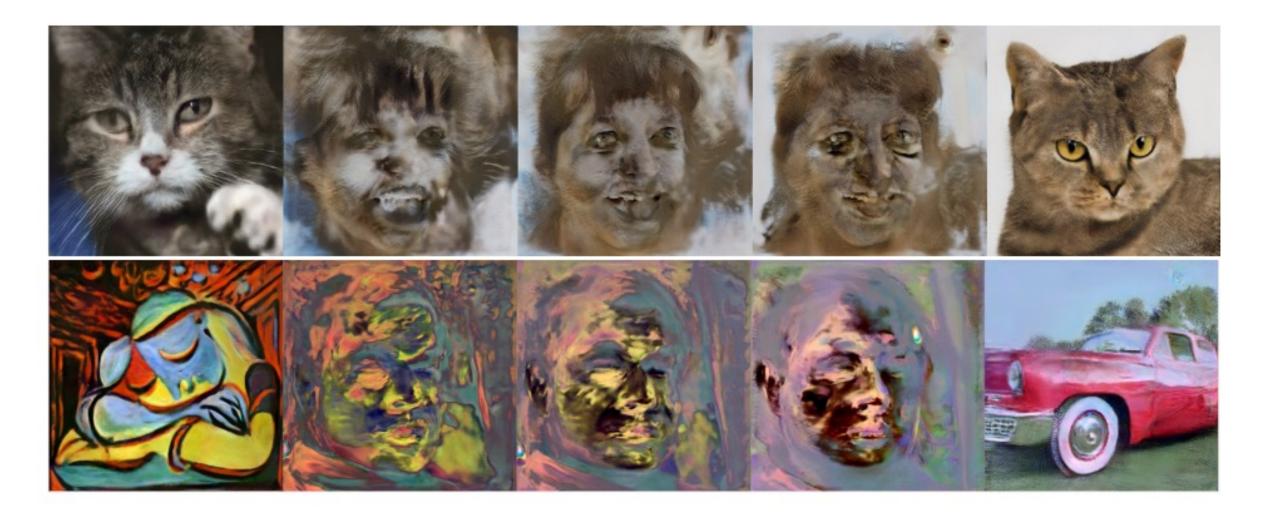
Image2StyleGAN [Abdal et al., 2019]

Reconstruction \neq Editing

Interpolations between two images

Image2StyleGAN [Abdal et al., 2019]

Reconstruction \neq Editing



Interpolations between two images

Image2StyleGAN [Abdal et al., 2019]